A sixth-order dual preserving algorithm for the Camassa-Holm equation

نویسندگان

  • Pao-Hsiung Chiu
  • Long Lee
  • Tony W. H. Sheu
چکیده

The paper presents a sixth-order numerical algorithm for studying the completely integrable CamassHolm (CH) equation. The proposed sixth-order accurate method preserves both the dispersion relation and the Hamiltonians of the CH equation. The CH equation in this study is written as an evolution equation, involving only the first-order spatial derivatives, coupled with the Helmholtz equation. We propose a two-step method that first solves the evolution equation by a sixth-order symplectic RungeKutta method and then solves the Helmholtz equation using a three-point sixth-order compact scheme. The first-order derivative terms in the first step are approximated by a sixth-order dispersion-relationpreserving scheme that preserves the physically inherent dispersive nature. The compact Helmholtz solver, on the other hand, allows us to use relatively few nodal points in a stencil, while achieving a higher-order accuracy. The sixth-order symplectic Runge-Kutta time integrator is preferable for an equation that possess a Hamiltonian structure. We illustrate the ability of the proposed scheme by examining examples involving peakon or peakon-like solutions. We compare the computed solutions with exact solutions or asymptotic predictions. We also demonstrate the ability of the symplectic time integrator to preserve the Hamiltonians. Finally, via a smooth travelling wave problem, we compare the accuracy, elapsed computing time, and rate of convergence among the proposed method, a second-order two-step algorithm, and a completely integrable particle method. keywords: Camassa-Holm equation; Hamiltonians; symplectic Runge Kutta; sixth-order; Helmholtz equation; dispersion-relation-preserving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy

We study an explicit correspondence between the integrable modified KdV hierarchy and its dual integrable modified Camassa-Holm hierarchy. A Liouville transformation between the isospectral problems of the two hierarchies also relates their respective recursion operators, and serves to establish the Liouville correspondence between their flows and Hamiltonian conservation laws. In addition, a n...

متن کامل

Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries

In this paper, multi-component generalizations to the Camassa–Holm equation, the modified Camassa–Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa– Holm equation and the multi-component modified Camassa–Holm equation are provided. It is shown that these equations arise from non-streching invariant c...

متن کامل

On the development of a high-order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa-Holm equation

In this paper a two-step iterative solution algorithm for solving the Camassa–Holm equation, which involves only the first-order derivative term, is presented. In each set of the u P and u m differential equations, one is governed by the inviscid nonlinear convection–reaction equation for the time-evolving fluid velocity component along the horizontal direction. The other equation is known as t...

متن کامل

Wave-breaking for the Weakly Dissipative Modified Camassa-Holm Equation

The equation (1) arises from an intrinsic (arc-length preserving) invariant planar curve flow in Euclidean geometry and it can be regarded as a Euclidean-invariant version of the Camassa-Holm equation in [1]. It has the form of a modified Camassa-Holm equation with cubic nonlinearity. By Fuchssteiner [2] and Olver and Rosenau[3], it can be derived as a new integrable system by applying the gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2010